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Boundary-layer flout at a saddle point of attachment 

By A. DAVEY 
Department of Mathematics, University of Manchester 

(Received 5 December 1960) 

This paper is a study of the flow of a viscous incompressible fluid in the immediate 
neighbourhood of a saddle point of attachment, near which the external flow is 
irrotational with components {ax,by, - (a+b)z) ,  where a > 0 > b. It is shown 
that the flow is of a boundary-layer character, and that part of the boundary- 
layer flow is reversed when b/a < - 0-4294. 

On the assumption that such flows are physically plausible, the problem may 
be solved for all values of b/a > - 1. Even in the limiting case b/a = - 1, an 
effect of the boundary layer is everywhere to draw fluid towards the wall, so 
that vorticity is still convected towards the wall. 

Numerical solutions have been computed, and some of the results are presented 
in the tables and diagrams. 

1. Introduction 
When a viscous fluid flows past a body which is simply connected and has a 

smooth surface, the fluid velocity at a small distance z from the surface is 
EZ + O(z2), where E is tangential to the surface S of the body. In  fact ,m denotes 
the skin-friction vector, that is the tangential component of the stress acting on 
S, where ,u is the coefficient of viscosity. A point of the surface at  which E = 0 is 
a stagnation point of the flow and is a ‘singular’ point of the system of skin 
friction and vortex lines on S. Such points may be classified into two types, nodal 
points and saddle points. Moreover, these points are said to be points of attach- 
ment or separation according as the fluid near the stagnation streamline is 
moving towards or away from the surface. 

The range of possible patterns of skin friction and vortex lines on such a surface 
is subject to a topological law, namely, that the number of nodal points must 
exceed the number of saddle points by 2. A proof of this theorem is given in the 
Appendix to this paper, together with definitions of the different types of singular 
points. 

It suffices to say here that for a stagnation point of attachment P of a stream- 
line from far upstream, where the flow is irrotational, we may express E in the form 
(ax, by) ,  where P(x, y) is the tangent plane at P and x, y are Cartesian co-ordinates. 
Points P such that both a and b are positive are nodal points of attachment, 
points P such that one (and only one) of a, b is negative are saddle points of 
attachment, provided a + b > 0. Saddle points of the flow may in some cases be 
related to the geometrical saddle points of the surface of the body, as will be 
discussed later. In  general boundary-layer theory is not applicable at  stagnation 
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points of separation, since at these points vorticity is not convected towards 
the body’s surface. 

In  the neighbourhood of a stagnation point of attachment, however, the flow 
of a viscous fluid is of a boundary-layer character even at moderate Reynolds 
numbers. Solutions for the flow at two-dimensional and axi-symmetrical stagna- 
tion points of attachment indicate that the additional terms in the full Navier- 
Stokes equations are identically zero, provided that the curvature of the body is 
so small that the surface may be taken to be plane. For the flow at a three-dimen- 
sional nodal point of attachment (Howarth 1951) it is also known that the 
boundary-layer equations yield similarly solutions which are full solutions of the 
Navier-Stokes equations. 

The work of Howarth is important here in that he shows that with a suitable 
choice of orthogonal axes (x, y, z )  the mathematical solution is the same as if the 
surface were plane, with the x- and y-axes in the plane, and with the external 
flow given by (ax, by, - (a  + b )  z>, where a and b are positive constants. 

The purpose of this paper is to discuss the flow near a stagnation point which is a 
saddle point of attachment. Here again the solution, with suitable choice of 
axes, is the same as for the problem with a plane surface, in which lie the x and y 
axes, with the external flow given by {ax, by, - (a  + b)z},  but where now 
- a < b < 0. The case b < -a would correspond to a saddle point of separation, 
but it will be shown in 8 5 that the equations cannot then be solved. 

Saddle points of attachment will occur on suitably shaped bodies placed in a 
uniform stream or, more practically, may occur for instance between the wing 
of an aeroplane and an engine mounting, the flow at which may affect separation 
of the laminary boundary layer over a larger area of the wing. 

The present work and that of Howarth only holds near stagnation points for 
which the external flow is irrotational. It is hoped to extend the treatment in a 
later paper to  discuss cases when the external flow possesses vorticity. 

2. The flow past a wavy cylinder 
As mentioned in the Introduction of this paper, it is possible for the inviscid 

flow at a stagnation point to be a saddle point of attachment. For an example 
of such a case let us consider the flow of an inviscid uniform stream past the 

as shown in figure 1. We choose 8 very small and use z to measure distance parallel 
to the axis of the cylinder, the uniform stream being perpendicular to this axis. 

The potential q5 of the inviscid flow satisfies Laplace’s equation V2$ = 0. 
We seek a solution of the form q5 = #o + are indepen- 
dent of s. Now q50 is the potential for flow past the cylinder T = r,,, so that 

cylinder r = ro(l+scoshz), 

+ O(c2), where q50 and 

qi0 = - u(r+;)cos$. 

Now Vaq51 = 0, 
and on the wall we require 

ycosy+-s iny  aq5 = 0, 
ar aZ 
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where y is the angle between the normal to the surface and the radial direction, 
since the component of velocity normal to the wall vanishes. 

Since y = O(E), we have 

(2.3) 
% ! + E L  a+ = O($) 
ar ar 

whenr = r0(l + E C O S ~ ) .  Thus 

- u { 1 - ( 1 + 6 c 0 s j l Z ) - ~ } C O s B + E $  34 = O(E2), 

whence r?] = 2Ucoshzcose. 
r=ro 

Hence we seek a solution of (2.2) of the form = @(r)  cos hz cos 0, and we obtain 

q51 = {AIl(hr) + BKl(hr)} cos Az cos 8. 

FIGURE 1. Flow past the cylinder T = v0(l + E 00s hz). 

we take A = 0 so that the outer boundary condition may 
ear 

Since I@) - - 
(2nAr)i 

be satisfied. Then (2.4) gives B = 2U/{AK;(hr0)), so that 

2ulfT,(Ar) COB hz cos 6. 
$1 = hK,(hr,) 

=--1 ueK (hr) sin ~z cos e, 

Thus the velocity components (uz, u,, ue) are given by 

K; (hro) 

u, = + u ( 1 + $1 sin B - uE+(Ar) cos hz sin 8. 
hrK,(Aro) 

38-2 
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Now set z = r/h + d  and r = ro( 1 - 8) + B where, for given e, 5 and P are arbitrarily 
small, so that to the first order in d and B the flow near the geometrical saddle 
point x = r/h, r = ro(l -e), 19 = 0 is given by 

2UheK1(hr ) 
u, = ” 

K;(hr,) 

Since K,(hr,) > 0 and K;(hr,) < 0 for hr, > 0, these equations show that the 
flow has a saddle point of attachment at the geometrical saddle point 

5 = P =  e = 0. 

3. The flow near a singular point 
Howarth (1951) obtained equations for the boundary-layer flow over a general 

curved surface S. He used a triply-orthogonal co-ordinate system (c, 8, 5)’ 
such that [ = constant and 0 = constant represent developable surfaces formed 
by the normals to the lines of curvature of S, and 6 = constant represents a sur- 
face parallel to X. 

I n  fact the restriction to lines of curvature is unnecessary, as Howarth’s 
equations are valid for any orthogonal system of curves [ = constant, 8 = con- 
stant on 8, as shown by Squire (1957). 

Let us choose such an arbitrary system ([, 8, 5) and suppose that the length 
elements are hid[, h2d8, h,dg in the 6, 8, 6 directions. Here h3 is by definition a 
function of galone, so that we may set h3 = 1 and use to measure distance from S. 

If u, v, w are the velocity components in the 6, 6,  g directions, respectively, 
the boundary-layer equations (assuming that h,, h, and all their first derivatives 
are not large) are as follows: 

Here 

are respectively the geodesic curvatures of the curves [ = constant and 0 = con- 
stant. 

In  equations (3.1), (3.2) and (3.3) the values of h,, h,, Kl and K ,  may, to the 
orders of approximation involved, be taken in the surface S. The pressure p is 
supposed to be prescribed by the inviscid flow, as its variation across the boun- 
dary layer is negligible. 
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Now let P be a stagnation point of attachment of the flow over 8. Choose the 
co-ordinates (c, 8,{ )  such that at P, 6 = 8 = { = 0 and h, = h, = 1, and such that 
the boundary-layer equations hold in the form (3.1) to (3.3) near P. 

If the mainstream has velocity components U ,  V ,  then, by irrotationality, 

av au ah ah, 
a$ a8 a$ a8 

h,--h - + + ’ c T - U - = O ,  

so that near P, neglecting terms of O ( [ ,  0), 

av au 
ag  ae - ‘a 

- _ _ -  

(3.4) 

(3.5) 

Thus, if we choose our co-ordinate system (g, 0) on the surface so that near P, 
U = At ,  then also V = Be, where A and B are constants. In  equations (3.1) 
to (3.3), the terms of lowest order near P are obtained by neglecting the curva- 
ture terms and replacing h, and h2 by 1. Moreover, to the same order of approxi- 
mation, we may suppose the surface to be plane at P with 5 measured normal 
to the surface so that in the neighbourhood of P the 5-, 8-, {-axes are rectangular. 

We now re-name these axes-P(<, 8, 5) becoming P(x, y ,  2)-and set A[ = ax  
and Be = by. Hence, as might have been expected, we see that a fist solution to 
the problem is the flow bounded by the plane z = 0 with an external velocity 
{ax, by, - (a  + b )  z>, where P(x, y ,  z )  are rectangular Cartesian co-ordinates. We 
do not consider the case when a and b are both negative, which would be appro- 
priate for a nodal point of separation. Hence one of a and b is positive and we 
shall take the greater of these to be a > 0. 

Howarth (1951) showed that the velocity components (u, v, w) referred to the 
axes P(x, y, z) may be taken in the form 

where 7 = a+z/v* is the dimensionless distance from the surface. Equation (3.3) 
is then satisfied, and equations (3.1) and (3.2) become 

(3.7) 
(3.8) 

u = axf(7) ,  v = by9’(7), w = - v+{af(r) + bg(r)}/& (3.6) 

f” + (f+ cg)f” + (1 -p) = 0, 
g” + (f+ cg) g“ + c( 1 - 9 ‘ 2 )  = 0, 

where c = b/a. 
The boundary conditions for (3.7) and (3.8) are 

(3.9) 1 f = g =f’ = g’ = 0 when 

f ’ + l , g ’ + l  as 7-+00. 
7 = 0, 

The solution given above leads to a solution of the full Navier-Stokes equations 
of motion, as the variation of pressure across the boundary layer can be deter- 
mined from the z-momentum equation. When c = 1 we have f = g, and this 
gives the flow at an axi-symmetrical stagnation point. When c = 0, we have 
b = 0 and the flow is that in the neighbourhood of a two-dimensional stagnation 
point, as on a cylinder in a uniform stream perpendicular to its axis. 

For intermediate values of c the velocity profiles given byf’(7) and g’(7) are 
of a boundary-layer type, as shown by Howarth who, in his paper, calculated 
these profiles for c = 0-25, 0.50 and 0.75, besides giving the already known solu- 
tions for c = 0 and c = 1. 
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4. The flow near a saddle point of attachment 

c < 0 may be found from 
In his paper Howarth (1951) stated that the solutions of f’(q) and g‘(7) for 

f(% - c )  = f(% c) ,  S(% - c )  = - S(% 4, 
but these equations are incorrect since they do not satisfy the boundary condi- 
tion at infinity. Thus solutions with c < 0 cannot be found from Howarth’s results. 

The component of velocity normal to the surface near the stagnation point 
is { - a( 1 + c) z>, which is negative when c > - 1 ; in the corresponding viscous 
flows the vorticity is therefore being convected inwards at the edge of the 
boundary layer. Thus it is likely that the conditions at infinity can be satisfied 
only when c > - 1, and that equations (3.7) and (3.8) will then have solutions of a 
boundary-layer form. Values of c between 0 and - 1 correspond to saddle points 
of attachment. 

A flow with 0 > c > - 1 can occur when an otherwise uniform stream flows 
past a suitably shaped body, as was shown in $2. It is desirable therefore to 
obtain quantitative results from equations (3.7) and (3.8) when c < 0, with the 
boundary conditions (3.9). These equations were integrated using the Manchester 
Mercury Computer. To solve the two-point boundary-value problem a special 
integration programme was written and solutions for f(7) and g(7)  and their 
derivatives were obtained, for different negative values of c,  correct to three 
decimal places. 

For a certain range of integration the programme evaluated the dependent 
variables at specified subintervals of the range and an auxiliary routine was used 
to tabulate the results. The integration programme used the Runge-Kutta 
process with an error per step of order h5, where h is a step length. To ensure a 
given accuracy in each subinterval of size d say, the results of using first p sub- 
steps and then p + 1 substeps were compared. If these differed by less than a pre- 
assigned small quantity the machine proceeded to the next subinterval. Other- 
wise p was increased until agreement was obtained or until there was no further 
improvement. 

For each value of the parameter c the corresponding values of s =f”(O) and 
t = g”(0)  had to be determined so that when the equations were integrated out- 
wards from the origin the solutions had the correct asymptotic behaviour. 

It was found that for each specific value of c there existed a line of points 
(s, t )  all of which gave solutions satisfying the outer boundary conditions. Thus 
the solution is not unique and it was found that the end-point of the line, which 
was semi-infinite in extent, was the one that madef’(7) and g’(7)  approach unity 
from below more quickly than any other solution without either ever becoming 
equal to unity. These solutions (for different c )  were taken to be the correct ones 
as they gave most rapid approach to the outer boundary condition, minimizing 
the boundary-layer thickness. These solutions are the ones whose asymptotes 
are derived solely from exponential terms. 

Let us determine for large values of the asymptotic solutions of equations 
(3.7) and (3.8). 
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a = lim ( 7 - f ) ,  /3 = lim (7-g), 
9+* 1+ * 
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Let 

and put f = 7 -a- H ,  g = 7 -/3- K .  Then if 

P = H'(7) = 1-f' and G = K'(7) = 1-g', 

the result of linearizing (3.7) and (3.8) is 

P"-{(a+/3c)-7(1+c))P'-2P = 0, 
G' - ((a +pc) - 7( 1 + c)> G - 2cG = 0, 

where primes denote differentiation with respect to 7. 
Now choose a new independent variable 

where k = (1 + c)' which is > 0, and (4.1), (4.2) become respectively 

0 
Y 

F"+xF' - -F  = 0, 
l + c  

2c 
l + c  

G"+xG'--G = 0. 

(4.3) 

(4.4) 

The aaymptotic solutions of (4.3) and (4.4) then give 

1 -f' Ale-4P X ( ~ / O + C ) + ~ }  { I+  o( I)> + ~,X2/(1+c)  {1+0(1)1 
1 - g' N A2e-4Xa xW(l+e)+lI (1 + o(1)) + B,XW(1+C) (1 +o(l)>. 

(4.5) 

(4.6) 

The values of A,, A,, B,, B, will depend upon the position of the point (8, t). 
In order to satisfy the boundary conditions at infinity, we must have B, = 0 but 
(since - 1 < c < 0) B, is left arbitrary. 

Thus there will be a curve in the (s, .!)-plane given by B, = 0 and the solution 
which approaches its asymptote most rapidly will be obtained from that point 
(a*, t * )  of the curve which makes B, = 0. The solutions which arise from points 
of the curve B, = 0 on one side of (a*, t*) will make B, < 0, and so 9' would ap- 
proach its limit from above, whereas those on the other side will make B, > 0, so 
that g' remains < 1. Thus, for each value of c the required point (s*, t*) is the 
intersection of the curves B,(s, t) = 0 and B,(s, t) = 0. 

A special subprogramme was written for the Mercury Computer to determine 
the appropriate points (s*, t * )  as accurately as possible. For each case s* was 
determined to 8 places of decimals and t* to 5 places. 

When c is slightly negative the solutions for f and g resemble those with c > 0. 
As c decreases g"(0) decreases so that the skin-friction along the y-axis is reduced 
as c becomes more negative. When c = - 0.4294 one finds that g"(0) = 0, indi- 
cating that there is a tendency for some of the flow to reverse its direction. When 
c < - 0-4294 reversal of the v-component of flow does in fact occur. However, 
the velocity profiles given by f'(7) and g'(7) are still of the same character as 
velocity profiles in two-dimensional boundary-layer flows with separation. 

When c = - 1 solutions satisfying the outer boundary condition are still 
obtainable, the amount of reversed flow is greatest and the greatest value of 
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g-+l from above 

B2‘0 

/ 
/ 

0 

Moreover, it was found from the numerical integration of (3.7) and (3.8) that 
when c = - 1, P-a = 2 4 2  to 5 decimals. Hence the asymptotic solutions are 

1 -f’ - Aled2+dz)q{l + o( 1)) + Ble(2-d2)q{1 + o( I)}, (4.9) 

1 -g‘ - A2e-d2T(1 +o(1)}+Bzr]e-d2~(1 +o(l)), (4.10) 

and the appropriate ones, for the same reasons as before, are given by Bl = B, = 0. 
Thus even when c = - 1 equations (3.7) and (3.8) still yield solutions which 

satisfy the Navier-Stokes equations for the flow over an infinite plane with an 
external flow (ax, - ay, 0). The three-dimensional boundary-layer displacement 
thickness which we define, in accordance with Lighthill (1958), to be the thickness 
of that layer which when attached to the original surface modifies the inviscid 
flow outside it by the same amount as the boundary layer, is now infinite and 
for large values of r] we have w = - 2(2av)4. When r] is small 

w - - V“+{f”(O) - g”(0)) 72, 

so that the negative value of g”(O), which indicates a reversal of flow, contributes 
to the flow towards the surface and so opposes the spreading of vorticity away 
from the surface. Thus a boundary-layer type of flow is still possible. 

Solutions of equations (3.7) and (3.8) with the boundary conditions (3.9) were 
obtained for thirteen different negative values of c 2 - 1 and some of these 
results are given in $7, which contains the numerical results. 

Finally we give the appropriate formulae for the various boundary-layer dis- 
placement thicknesses for general c. Since w = - v+(af+ bg)/a*, we have for large 7 

w = -v+{a(?/l-a)+b(r]-p)+o(l)}/a+, 

A t  

B2= 0 
/ \ B1= 0 

\ / 
\ / 

/ 
/ -\ 

\ / 
/ 

\ / 
\ / * B  

/ (s.7 t‘) 

\ 

\*/’ 

” / ” \-&:klow SoIutions with 
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where a, and /3 are as defined earlier. Hence the three-dimensional boundary- 
layer displacement thickness 6, at the saddle point is given by 

V 4  a+cp 
6, = a+ - {  --). l + c  (4.11) 

The two-dimensional boundary-layer displacement thicknesses S,, au in the x-, 
y-directions respectively are given by 

Some values of a,, S,, and S,, are tabulated for different values of c in table 1 
of $7. 

5. Insolubility of the case c < - 1 
When c < - 1 the external flow has w = -a( 1 + c) z so that w > 0. Hence in 

the corresponding viscous flow it seems likely that vorticity will beconvected 
away from the surface into the mainstream. Because of this we expect conditions 
at  infinity to be upset, and we prove below that no solutions of (3.7) and (3.8) 
exist which satisfy all the boundary conditions (3.9). We restrict our attention 
to the existence of solutionsf and g which possess derivatives of every order at all 
points in the range 0 < 7 < CQ. 

Lemma 1. No solution g’(7) exists which has a stationary value of 1 for finite 7. 

Proof. Equation (3.8) may be re-arranged in the form 

g”’ = c(g’2 - 1) - (f+ cg) 9”. (5.1) 

Suppose for q = ql we have g’(7,) = 1 and g”(7,) = 0. Then it follows from (5.1) 
and the derivatives of this equation that g”’ and all higher derivatives are zero 
when 7 = q,, hence g’ = 1. The boundary condition g’(0) = 0 is thus not satisfied 
and the Lemma is proved. 

Lemma 2. When c < 0 and g’ has a stationary value then if Ig’J < 1 it is a 
minimum and if 19‘1 > 1 it  must be a maximum. 

Proof. If g‘ has a stationary value, then g“ = 0 at this point and g”’ = c(g‘2 - 1) 
by equation (5.1). 

Thus if c < 0 and Ig’l < 1,g” > 0 so that g’is a minimum. If c < 0 and Ig‘l > 1, 
9”’ < 0 and g’ is a maximum. 

Theorem 1. There is no solution g’(7) when c < - 1 such that g‘ -+ 1 as 7 --f 03, 

with Ig‘l < 1 for all q > qo. 
Proof. Suppose if possible that such a solution g’(7) exists. By lemma 2, since 

19’1 < 1, g‘ has for 7 > qo at most one stationary value because one cannot have 
two consecutive stationary values which are both minima. 

Also since g‘ -+ 1 as 7 -+ 03 and Ig‘l < 1 for all 7 > v0 then g” must be positive for 
all sufficiently large 7. 
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Moreover f + cg N (1 + c) 7 will, for c < - 1, be negative for all sufficiently large 
7. Hence (5.1) gives g”’ > 0 for all sufficiently large 7. Since g“ > 0 this contra- 
dicts the assumption that g’ -+ 1 and so no such solutions exists. 

Theorem 2. There is no solution g‘ (7)  when c < - 1 such that g‘ -+ 1 as 7 +- 00, 

with g’ > 1 for all 7 > qo. 
Proof. Similar to that given in theorem 1. 

Lemma 3.  If, when c < - 1, f +cg < 0 for all 7 > qo and g”(7) vanishes for 
< q2 < ..., then the sequence g’(ri) does not tend to 7 = 

l a s i - t co .  

where g”(V,.) = g”(7,) = 0 with qo < 7r < T ~ .  

vz, ... with 7o < 

Proof. Multiply (5.1) throughout by g”(r]) and integrate between qr and 

Then 

where h = 

(5.2) [Qg”2lJ: = Qc[(g’3 - 39’11: - A, 

(f + cg) g“%?y. J: 
Since f + cg < 0 for all 7 > ?lo, A is negative and (5.2) gives 

(S t3  - 39’1, > (s’, - 39’),,. 

As g’ = 1 makes (g‘3-3g‘) a minimum when regarded as a function of g‘, 
we therefore cannot have g ’ ( r i )  --+ 1 as i --+ co. 

Theorem 3, Equation (5.1) or (3.8) has no solution satisfying g’(7) -+ 1 as 
q+cowhenc < -1. 

Proof. Suppose if possible such a solution g’(7)  exists. Then it follows from 
theorems 1 and 2 that g’ must take values on both sides of 1 as 7 -+ 00. Hence 
there must be a distinct sequence ri with yi+l > vi and lim q, = 00 at which g’ has 

stationary values. Since f’ + cg‘ -+ 1 + c < 0 we can choose q0 such that f + cg < 0 
for all 7 > v0. Then by lemma 3 the sequence g’(Vi) does not tend to 1, contrary to 
hypothesis. 

We might note that theorem 3 disproves the existence of mathematical solu- 
tions of equations (3.7) and (3.8) with the boundary conditions (3.9), whereas 
lemma 1 and theorem 1 in themselves are sufficient to disprove the existence of 
solutions which are physically plausible. 

i+co 

6. Physical interpretation of the results 
To what extent does one have fluid flows with saddle points of attachment 

which may be quantitatively explained by our results? Also, how useful a guide 
are our solutions, when it is remembered that we used a mainflow which was a 
linear function of the co-ordinates, so that our solutions are only applicable in 
the immediate neighbourhood of the stagnation point ? 

The possibility of saddle points of attachment occurring in inviscid flows was 
demonstrated in $2. Consider now a body, symmetrical about the planes 2 = 0, 
y = 0, possessing two protuberances as shown in figure 3. Here the z-axis is 
normal to the body at Z, and the (x, y)-plane is the tangent plane at Z,, the y-axis 
lying in the plane of the paper. 
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When this body is placed in a uniform stream V, parallel to the z-direction 
there will be nodal points of attachment at the protuberances if the rest of the 
body is slenderly swept back. If the curve C, the intersection of the surface of the 
body with the (y, 2)-plane is indented only slightly between the nodes, there will 
be a saddle point of attachment at 2,. The flow in the neighbourhood of 2, will 
be given by the solution of equation (3.7) and (3.8) for some value of c between 0 
and - 0.4294. 

In  figure 4 the full lines give the mainflow in the y-direction near the nodes 
and the saddle point, where it depends linearly on y. It is reasonable to suppose 

FIGURE 3. Flow past a body with two protuberances. 

Velocity I 
I-- \ 

Y z5 * 
z3\ L/’ 

FIGURE 4. The external velocity in the y-direction. 

that between these points the mainflow may be extrapolated via the dashed 
lines. These would not cross the axis, for if so, we would have more nodes and 
saddles but we are explicitly considering a saddle point of the flow and its two 
adjacent nodes. In  this case, where the ffow near Z3 is given by equations (3.7) 
and (3.8) for some value of c between 0 and -0.4294, the pattern of the skin- 
friction lines on the surface of the body is as shown in figure 5. 

Two cases are possible according as to which direction the skin-friction lines 
at 8, and Z5 are tangential. A general guide is that they will be tangential to the 
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direction of greatest principal curvature at these points, which direction will 
depend on the shape of the protuberances. The topography for the two cases is, 
however, essentially unchanged save near these points, and we illustrate the 
case when the protuberances extend more in the 2-direction than in the 
y-direction. 

J 
FIGURE 5. The pattern of skin-friction lines when the flow near 2, is given by 

equations (3.7) and (3.8) for a value of c>  -0.4294. 

Now suppose we bend the curve C in figure 3 further inwards a t  2, so as to 
increase the inflow in the y-direction towards 2,. Then the corresponding value 
of c, appropriate to the flow near Z,, will diminish and if the i d o w  towards Z, 
is great enough the flow would reverse its direction along and near to the y-axis. 
It is possible that if this happened the backflow would spread causing additional 
saddle points of attachment 2, and 2, (at which there was no reversed flow) in 
the flow very close to the surface and in the skin-friction lines, the original saddle 
point having changed into a node so that the new pattern is as in figure 6. Note 
that in the region shown here the excess number of nodal points over saddle 
points is unchanged as required (see Appendix). 

Since streamlines from far upstream now attach themselves at 2, and Z,, the 
surface flow near 2, is considerably altered, however, the general structure of 
the flow is readily inferred on examining figure 6. The lines X S  through 2, and 
2, will be lines of separation of limiting streamlines and the line AA through Z, 
will be a line of attachment. One infers that fluid separates, in the form of bubbles 
from the lines XS, the surfaces of separation curling over as fluid falls down the 
‘back’ of the saddle and attaching themselves to the line AA. This means that 
mainstream fluid which approaches the body between the streamline surfaces 
through say the stagnation streamlines which attach themselves to 2, and Z,, 
falls off the ‘back’ of the saddle, rotates, and stretched away like a vortex in a 
clockwise direction viewed from figure 7. Similarly another vortex rolls away 
on the other side of Z ,  in an anti-clockwise direction. 

The presence of the vortex bubble may invalidate the assumption that the 
flow near Z ,  is of boundary-layer nature, and so solutions of equations (3.7) 
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and (3.8) for values of c less than - 0.4294 may be only of theoretical interest. 
When one has flow over a semi-infhite plane, the only singularity being the 
saddle point, backflow may be said to occur where 

FIGURE 6. The pattern of skin-friction lines when reverse flow  occur^ in the 
boundary layer near 2,. 

FIGURE 7. The ‘twin vortex bubble’ which rolls away from 2, down 
the back of the saddle. 
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Here v, is the external mainflow and v, is the velocity within the boundary 
layer. Near the saddle point 2, then there is backflow where 

a22Y"(7> + b2Y2S'(7) + f (a  + b)  r(af(7) + bS(7)) < 0. (6.2) 

For fixed 7 this is the region contained by a hyperbola whose asymptotes L,, 
L, are the lines 

Velocities normal to the surface 7 = 0 are small even for a moderate Reynolds 
number, so that such hyperbolae lie close to their asymptotes. In  fact as 7 -+ 0 
the associated hyperbola reduces to its asymptotes which then pass through 
the origin. For fixed 7 the region of backflow diminishes as 7 increases until it 
becomes zero at 7 = 7, where g'(7)  = 0 again, when the two lines L,, L, coincide. 

a2zx2f'(7) + b2y2g'(r]) = 0. (6.3) 

7. Numerical results 
Solutions of equations (3.7) and (3.8) subject to the boundary conditions (3.9) 

were obtained for thirteen negative values of c and in particular for c = 0, 
-0.25, -0.4294, -0.50, -0.75 and - 1. The initial values f"(0) and g"(O), 
together with the three boundary-layer displacement thicknesses, are given in 

C 

0.0 
- 0.1 
- 0.2 
- 0.25 
- 0.3 
- 0.4 

- 0.4294 

- 0.5 
- 0.6 
- 0.7 
- 0.75 
- 0.8 
- 0.9 
- 1.0 

Y(0i 
1.2326 
1.2284 
1.2258 
1.2251 
1.2250 
1-2265 

1.2273 

1-2302 
1.2359 
1-2432 
1.2473 
1.2517 
1.2612 
1.2729 

a+ 
q"(0l J 4 

0.5705 0.648 
0.4594 0-600 
0.3353 0-501 
0.2680 0.421 
0.1970 0.311 
0.0460 - 0.036 

0 - 0.183 

-0.1115 - 0.652 
- 0.2666 - 1.726 
- 0.4130 - 3.688 
- 0.4821 - 5.330 
- 0.5488 - 7.852 
- 0.6761 - 20.96 
- 0.8112 --oo 

TABLE 1 

a* 
v3 

0.648 
0.654 
0.658 
0.659 
0.660 
0.659 

0.658 

0.655 
0.649 
0-641 
0.637 
0.632 
0.622 
0.610 

a* 
a 
1.026 
1-141 
1-287 
1.375 
1.474 
1.702 

1.776 

1.962 
2.232 
2.497 
2.625 
2.753 
3-018 
3.438 

table 1 for all thirteen cases considered and the corresponding quantities for 
c = 0 are also given for comparison. Quantities in this table are correct to the 
number of decimal places given. One may note from this table that a1, the 
three-dimensional displacement thickness, is negative for a range of c for which 
reverse flow does not occur. As c approaches - 1  then 6, becomes large and 
negative. When c = - 1 we have 8, = -a and 8, - 6, = 2.828. This last figure 
was evaluated more accurately and found to be equal to 2 J2 to five decimal 
places. 



000.1 
666.0 
966-0 
L86.0 

6L6.0 
696.0 
P96.0 
EE6.0 
906.0 

698.0 
PZ8.0 
69L.O 
8OL.O 
629-0 

689.0 
LP9.0 
PO9.0 
09P.O 
917.0 

1 L E - 0  
L2E.O 
P82.0 
EP2.O 
POZ.0 

L91.0 
PET-0 
€01.0 
9 LO.0 
€90.0 

f E O . 0  
610.0 
600.0 
zoo-0 
000.0 

- 
- 
- 
- 

- 

000*1 
666.0 
866.0 
L66-0 

966.0 
€66.0 
886.0 
086.0 
696-0 

196.0 
296.0 
IP6.0 
L26.0 
T16.0 

168.0 
898.0 
TP8.0 
018.0 
ELL.0 

EL.0 
289.0 
929.0 
€99.0 
26P-0 

21P.O 
P2E.O 
922.0 
811.0 
000.0 

- 
000.1 
666.0 
966.0 

P66.0 
686.0 
€86.0 
8L6.0 
896.0 

8E6.0 
116.0 
9L8.0 
688.0 
P L L - 0  

ZPL.0 
80L.O 
ZL9.0 
EE9.0 
€69.0 

199.0 
809.0 
P9P.O 
61P.O 
9LE.0 

1E8.0 
L82.0 
BPZ-0 
POZ.0 
P91.0 

L Z 1 . 0  
260.0 
690.0 
820.0 
ooo*o 

t.6 

2 3'IEVA 

- 
- 
- 
- 

- 

000.1 
666.0 
666.0 
866.0 

966.0 
€66.0 
886.0 
186-0 
696.0 

196.0 
296.0 
IP6.0 
L26.0 
016.0 

168.0 
898.0 
TP8.0 
608.0 
ZLL.0 

62L.O 
189.0 
929.0 
299.0 
16P.O 

Z1t.O 
E2E.O 
922.0 
811.0 
ooo*o 

,$ - 
92.0- = 3 

- 
- 
- 

000.1 

666-0 
866.0 
966.0 
€66.0 
686.0 

186.0 
696-0 
196.0 
926-0 
168.0 

OL8.0 
9P8-0 
618.0 
68 L.0 
99L-0 

02L.O 
189.0 
6E9.0 
P69.0 
L t 9 . O  

86VO 
9PP.O 
16E.0 
6E8-0 
P82-0 

LZZ.0 
1LI.O 
P11.0 
L90-0 
000.0 

,6 

- 
- 
- 
- 

- 
- 

000.1 
666.0 
866.0 

L66.0 
966.0 
166.0 
P86.0 
EL6.O 

996.0 
L96.0 
9P6.0 
ZE6.0 
916.0 

L68.0 
PL8.0 
L f 8 . O  
918.0 
8 L L.0 
9EL.0 
989.0 
OE9.0 
999.0 
969.0 

PIP.0 
9ZE.O 
LZZ.0 
811.0 
000.0 

,$ 
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7 
0.0 
0.1 
0.2 
0.3 
0.4 

0-5 
0.6 
0.7 
0.8 
0.9 

1.0 
1-1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1-8 
1-9 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4-0 
4.5 
5.0 
6.0 
7.0 
9.0 

c = -0.50 , 
f’ 

0~000 
0.118 
0.226 
0-325 
0.413 

0.493 
0.565 
0.628 
0-684 
0-733 

0.775 
0.812 
0.843 
0.870 
0.893 

0.912 
0-928 
0-942 
0.953 
0.962 

0.970 
0.981 
0.988 
0.993 
0.996 

0.997 
0-999 
0.999 
1.000 
- 

- 

- 
- 
- 
- 
- 

9> 

0.000 
- 0.009 
- 0.012 
- 0.01 1 
- 0.005 

0.007 
0.023 
0-043 
0.069 
0.098 

0.131 
0.167 
0.207 
0.248 
0.292 

0-337 
0.382 
0.428 
0-473 
0.518 

0.562 
0-644 
0.717 
0.780 
0.833 

0.876 
0.911 
0.937 
0.956 
0.970 

0.980 
0.994 
0.998 
1.000 
- 
- 

c = -0.75 
& 
f’ 

0.000 
0.120 
0.230 
0.330 
0.420 

0.501 
0-574 
0.638 
0.695 
0.744 

0-786 
0.823 
0.854 
0.881 
0.903 

0.922 
0.937 
0.950 
0.960 
0.968 

0.975 
0.985 
0.991 
0.995 
0.997 

0.998 
0.999 
0.999 
1.000 
- 

- 
- 

- 
- 
- 
- 

TABLE 2 (cont.) 

9’ 

0.000 
- 0.044 
- 0.081 
-0.111 
- 0.133 

- 0.147 
- 0.154 
- 0.153 
- 0.145 
- 0.130 

- 0.109 
- 0.082 
- 0.049 
- 0.011 

0.031 

0.076 
0.124 
0.175 
0.226 
0.279 

0.331 
0.433 
0.529 
0.617 
0.694 

0-759 
0.814 
0-859 
0.895 
0.923 

0.944 
0-977 
0.991 
0.999 
1.000 
- 

c =  -1 

f’ 
0-000 
0-122 
0.235 
0-337 
0.430 

0-513 
0-588 
0-653 
0.711 
0-760 

0-803 
0.840 
0.870 
0.896 
0.917 

0.935 
0-949 
0.960 
0.969 
0.976 

0.982 
0.990 
0.994 
0.997 
0.998 

0.999 
1-000 
- 
- 
- 
- 
- 
- 
- 
- 
- 

9‘ 

0.000 
- 0.076 
- 0.142 
-0.198 
- 0.244 

- 0.280 
- 0.307 
- 0.323 
- 0.330 
- 0,328 

- 0.318 
- 0.299 
- 0.273 
- 0.241 
- 0‘203 

- 0.160 
-0.114 
- 0.064 
- 0.012 

0.042 

0.097 
0.206 
0.311 
0.410 
0.500 

0.581 
0.661 
0.712 
0.764 
0.807 

0.844 
0.909 
0.948 
0.984 
0.995 
1.000 

1.312 when c = 1, is zero when c = -0.4294 and becomes negative attaining 
a minimum value of - 0-81 1 when c = - 1. The function 7 = V(c)  mentioned at 
the end of the previous section, which measures, when c < - 0.4294, the height 
of the back-flow region, has a maximum value of 1.82 when c = - 1. 
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Appendix : singular points 
If, as in the Introduction, we have viscous fluid flowing past a body which is 

topologically equivalent to a sphere and which has a smooth surface, the fluid 
velocity a t  a small distance x from the surface is EZ + O(za), where E, a function of 
position of a point P on the surface S, lies in the tangent plane to S at P. Let 
n denote the unit vector along the outward normal to S at P and let w denote the 
fluid vorticity in the tangent plane to S at P so that E = w A n. Then the system of 
lines E parallel to dr and w parallel to dr, where dr is the relative position of 
two adjacent points on a curve, form an orthogonal net on S, the latter being the 
vortex lines on the surface. 

A point of S at which E = w = 0 is a stagnation point of the flow and is a singu- 
lar point of the differential equations of both systems of curves which map 8. 
Let P be such a singular point and take rectangular Cartesian co-ordinates 
P(z, y, z )  such that Px is along the outward normal to the surface and P(x, y) is 
the tangent plane to S at P. 

By continuity of the flow the normal component of velocity w is given by 

w = - &Ax2+ O(z3), 

where A = div E is the two-dimensional divergence of E. 

of attachment or separation, respectively. 
According as to  whether A > 0 or A < 0 we say that P is a stagnation point 

Now suppose E has components ex, ev with respect to the x, y-axes and define 

aexae aexaev 
ax ay ay a x a  J = --l!--- 

J is invariant with respect to a rotation about P of the x, y-axes in the tangent 
plane at P and according as J > 0 or J < 0 we say that P is a nodal point or a 
saddle point, respectively. 

Also, the vorticity normal to the surface is 

(3 - 2) 2 + 0 ( 2 2 ) ,  

and at a stagnation point of attachment of a streamline from far upstream where 
the flow is irrotational we must have 

since fluid very close to the stagnation streamline can in no way acquire vor- 
ticity. This means that by suitably choosing our x- and y-axis E takes to fist 
order in x and y the form (ax, by) near P. 

This is the case which covers the stagnation point flows discussed in the present 
paper. For this case we have A = a+  b and J = ab. Since A > 0, one of a, b must 
be positive and we choose the greater to be a > 0. Hence J = az(b/a), so that 
for b > 0 we have a nodal point and for b < 0 we have a saddle point. 

We now give a proof that the number of nodal points on S exceeds the number 
of saddle points by 2. We assume that the skin-friction lines on S have a finite 
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number of distinct nodes and saddles at which E = 0, where we say the vector 
field has an isolated singularity. 

Let A be a non-intersecting polygon on S whose sides C,, C, . . . , C, are geodesics 
which do not pass through a singularity of e. Define an integer 

where [S], is the variation along Ci in a counter-clockwise direction of the angle B 
between the tangent t to C, and the vector E, and K is the Gaussian curvature of S. 

I n  the case of a small (almost plane) polygon enclosing a singularity of E, 

Kda .I. 0 and A(A) coincides with the index of the singularity, defined to be 1. 
the variation of 8 round the polygon. 

In  general Kda is a correction term to make A(A) an integer, and is the s, 
measure of the non-Euclidean nature of S, for 

/ A  Kda = 27r - (exterior angles of A ) ;  

this is the content of the Gauss-Bonnet Theorem (Eisenhart 1940). It is easily 
shown that if A ,  B are polygons overlapping only on their edges, then 

A(A) + A(B) = A(A + B), 
also if A is small and contains at most one singularity of e, then A(A) = 1, - 1 ,0  
according as A contains a node, a saddle point, or no singularity of E. Thus 
for any A ,  A(A) = nA - sA where A contains n, nodes and s, saddle points of e. 

Thus if S contains n nodes and s saddle points, then 

n--5 = A(A)+A(S-A)  = - iy-p, 
since the terms [S] ,  cancel in the sum. The expression on the right is the Euler- 
Poincarh characteristic of S, and is 2 for a sphere. Thus we have for 8 that 
n - s = 2 as required. 

If, for instance, s = 0 there will be just one nodal point of attachment on the 
body. The surface streamlines will diverge therefrom and then converge to leave 
the body at one nodal point of separation, If, however, there are two nodal 
points of attachment the surface streamlines from each must divide somewhere 
at a saddle point of the surface flow. Similarly, if one has two nodal points of 
separation these will also have associated with them a saddle point, the stream- 
lines from which will diverge to one or other of these nodal points of separation. 
Thus, over and above the two original nodal points, one of attachment and one 
of separation, for each additional nodal point there will be an additional saddle 
point so that n-s  = 2 in all possible cases. 
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